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LIFTING OF MODULAR FORMS

by

Jitendra Bajpai

Abstract. —The existence and construction of vector-valued modular forms (vvmf) for any arbitrary
Fuchsian group G, for any representation ρ : G −→ GLd(C) of finite image can be established by lifting
scalar-valued modular forms of the finite index subgroup ker(ρ) of G. In this article vvmf are explicitly
constructed for any admissible multiplier (representation) ρ, see Section 3 for the definition of admissible
multiplier. In other words, the following question has been partially answered: For which representations
ρ of a given G, is there a vvmf with at least one nonzero component?

Résumé. — (Relévement de Formes Modulaires)L’existence et construction de formes modulaires vec-
torielles (vvmf) pour un groupe Fuchsien arbitraire G et pour une représentation ρ : G −→ GLd(C)
d’image finie peut être établie en relevant des formes modulaires scalaires pour le sous-groupe d’indice
fini ker(ρ) de G. Dans cet article, des vvmf sont explicitement construites pour tout multiplicateur admis-
sible (représentation) ρ (voir paragraphe 3 pour la définition du multiplicateur admissible). En d’autres
termes, on a partiellement répondu à la question suivante: Pour quelles représentations ρ d’un groupe G
donné, existe-t-il une vvmf avec au moins une composante non nulle ?

1. Introduction

Scalar-valued modular forms and their generalizations are one of the central concepts in
number theory. Why is the notion of vector-valued modular forms one of the natural gen-
eralizations of scalar-valued modular forms? History of modern mathematics answers this
question naturally. All of the most famous modular forms have a multiplier, for example:

η

(
aτ + b

cτ + d

)
=
√
cτ + d · ρ

(
a b
c d

)
· η(τ) for

(
a b
c d

)
∈ SL2(Z), τ ∈ H.

Here H = {z = x+iy ∈ C | y > 0}, denotes the upper half plane and η(τ) = q1/24Π∞n=1(1−qn)
is the Dedekind eta function with q = e2πiτ . In this case the multiplier ρ is a 1-dimensional
representation of the double cover of SL2(Z). These examples suggest having multipliers ρ
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6 Lifting of Modular Forms

of dimension d ≥ 1 and the corresponding modular forms are called vector-valued modular
forms (vvmf).
In the 1960’s, Selberg [29] called for a theory of vvmf, as a way to study the noncongruence
scalar-valued modular forms as these look intractable by the methods available in the the-
ory of scalar-valued modular forms. In the 1980’s, Eichler–Zagier [11] explained how Jacobi
forms and Siegel modular forms for Sp(4) can be reduced to vvmf. Since then the theory
has been in demand to be developed. The work of Borcherds and the rise of the string the-
ory in physics have been major catalyst in the development of the theory. This theory of
vvmf has applications in various fields of mathematics and physics such as vertex operator
algebra, conformal field theory, Borcherds–Kac–Moody algebras, etc. In Zwegers’ work [33]
on Ramanujan’s mock theta functions, vvmf have played an important role to make them
well fit in the world of modular forms. There are plenty of vvmf in “nature”. For instance the
characters of a rational conformal field theory (RCFT) form a vvmf of weight zero, see [9, 25].
The Borcherds lift associates vvmf for a Weil representation to automorphic forms on orthog-
onal groups with infinite product expansions, which can arise as denominator identities in
Borcherds–Kac–Moody algebras, see [6, 7].
In terms of developing the theory of vvmf, some efforts have been made to lift to vvmf,
classical results like dimension formulas and growth estimates of Fourier coefficients of vvmf
of the modular group. For example we refer [4, 17, 18, 22, 23, 24] to mention a few of these
efforts and [8, 14] for the current state of the art. However, this article is mainly concerned
with Fuchsian groups of the first kind and looks further than the modular group regarding
explicit construction of vvmf. The existence of vvmf for any Fuchsian groups of the first kind
with respect to any multiplier has been discussed in [27]. The classification of vvmf for any
genus zero Fuchsian groups of the first kind and a method to construct vvmf for triangle
groups have been established by the author in his doctoral dissertation [3].
More precisely, this article will show that a vvmf X(τ) of a finite index subgroup H of any
Fuchsian group of the first kind G can be lifted to one of the vvmf X̃(τ) of G by inducing the
multiplier. Similarly a vvmf X(τ) of G can be restricted to one of the vvmf X(τ) of any of
the finite index subgroup H by reducing the multiplier. However, lifting of a vvmf increases
the rank of vvmf by the factor equal to the index of H in G whereas the restriction does not
affect the rank of vvmf.
These arguments give an easy construction of vvmf of any finite index subgroup H of G.
The lifting argument can also be used to verify the existence of scalar-valued noncongruence
modular forms. Usually, for any multiplier ρ : Γ(1)→ GLd(C), ker ρ will be a noncongruence
subgroup of Γ(1). Since all the components of vvmf of G are scalar-valued modular forms
of ker ρ, this gives a different approach and direction to develop the theory of scalar-valued
noncongruence modular forms of Γ(1) and hence some hope to contribute substantially in the
development of the long standing Atkin–Swinnerton–Dyer conjecture about the unbounded
denominator (ubd) property of modular forms of Γ(1). For original account of this problem,
see [2]. To this date there are many advances have been witnessed to resolve and address
the ubd property of noncongruence modular forms. For example [19, 20, 21, 28] and more
recently by Franc and Mason in [12, 13].
One of the advantages of vvmf is that (unlike scalar-valued modular forms) it is closed under
inducing. For example θ2(τ) and η(τ) are scalar-valued modular forms of weight 1/2 of Γ(2).
However, θ2(τ) is not a scalar-valued modular form of Γ(1), but their lifts θ̃2(τ), η̃(τ) are
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J. Bajpai 7

vvmf of Γ(1) with respect to the rank six multiplier 1̃ = IndΓ(1)

Γ(2)
(1). It is customary to denote

the space of weight w scalar-valued weakly holomorphic and holomorphic modular forms of
group Γ by M!

w(Γ) := M!
w(Γ, 1) and Mw(Γ) := Mw(Γ, 1) respectively. Throughout the article

for any matrix A of order m× n, At denotes the transpose of A.
Throughout this article, we work with even integer weights - the same construction works
for fractional weights but extra technicalities obscure the underlying ideas. It is also shown
below that the spaces M!

w(Γ(1), 1̃) and M!
w(Γ(1), 1) are naturally isomorphic modules over the

ring M!
0(Γ(1), 1). More importantly, we have achieved M!

0(G, 1)-module isomorphism between
M!
w(ρ) and M!

w(ρ̃), see Theorem 4.3. In addition, for any admissible multiplier ρ : H →
GLd(C) we prove the admissibility of ρ̃ = IndG

H(ρ) in Theorem 4.2. This construction was
helpful in showing the existence of vvmf of any Fuchsian group G of the first kind for any
finite image admissible multiplier ρ and it is established in Theorem 5.1. Among these results,
Lemma 4.5 explains a beautiful relation between the cusps of H and its index in G.
In the following section we review the theory of Fuchsian groups. There is vast literature
available on Fuchsian groups and therefore nothing original is guaranteed in this section. For
detailed exposition, see [5, 15, 30, 31].

2. Fuchsian Groups

The study of Fuchsian groups begins by looking at the discrete group of motions of the upper
half plane H in the complex plane C equipped with the Poincaré metric ds2 = dx2+dy2

y2 . The
group of all orientation-preserving isometries of H for this metric coincides with the group
PSL2(R) = SL2(R)/{±I}, where SL2(R) =

{ (
a b
c d

) ∣∣ a, b, c, d ∈ R, ad − bc = 1
}
. Roughly

speaking, a Fuchsian group is a discrete subgroup G of PSL2(R) for which G\H is topologically
a Riemann surface with finitely many punctures. The action of any subgroup of SL2(R) on
H is the Möbius action

(
a b
c d

)
· τ = aτ+b

cτ+d . Define H∗ = H ∪ R ∪ {∞} to be the extended
upper half plane of PSL2(R) and this action can easily be extended to H∗. The action of any
γ = ±

(
a b
c d

)
∈ PSL2(R), on any x ∈ R ∪ {∞} is defined by γ · x = limτ 7→x

aτ+b
cτ+d ∈ R ∪ {∞}.

The elements of PSL2(R) can be divided into three classes: elliptic, parabolic and hyperbolic
elements. An element γ ∈ PSL2(R) is elliptic, parabolic or hyperbolic, if the absolute value of
the trace of γ is respectively less than, equal to or greater than two. Note that PSL2(R) fixes
R ∪ {∞} and, in H∗ there is only one notion of ∞ usually denoted by i∞ but for notational
convenience it will be written ∞. For any x ∈ R it is observed that there exists an element
γ = ±

(
x −1
1 0

)
such that γ · ∞ = x which means PSL2(R) acts transitively on R ∪ {∞}. For

any x ∈ R such γ is denoted by Ax .

Definition 2.1. — Let G be a subgroup of PSL2(R). A point τ ∈ H is called an elliptic
fixed point of G if it is fixed by some nontrivial elliptic element of G, and c ∈ R∪{∞} is called
a cusp (respectively hyperbolic fixed point) of G if it is fixed by some nontrivial parabolic
(respectively hyperbolic) element of G. Moreover, EG and CG denote the set of all elliptic
fixed points and cusps of G and define H∗G = H ∪ CG to be the extended upper half plane
of G.

For example, if G = PSL2(R) then CG = R ∪ {∞}, EG = H and if G = PSL2(Z) then
CG = Q∪{∞}, EG = G·i∪G·ω, where ω = 1+i

√
3

2 . For any τ ∈ H∗G , let Gτ = {γ ∈ G | γ ·τ = τ}
be the stabilizer subgroup of τ in G. For each τ = x + iy ∈ H, Gτ is a cyclic subgroup of G
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8 Lifting of Modular Forms

of finite order generated by γτ = AτKmA
−1
τ , where m = m(τ) is the unique positive integer

called the order of τ , Aτ = 1√
y ( y x0 1 ) such that Aτ (i) = τ and Km = ±

( cos( π
m

) sin( π
m

)
−sin( π

m
) cos( π

m
)

)
. For

any c ∈ CG , Gc is an infinite order cyclic subgroup of G. If c = ∞ then G∞ is generated by
γ∞ = ±

(
1 h∞
0 1

)
= th∞ for a unique nonzero positive real number h∞ , called the cusp width of

the cusp ∞, where we write t = ± ( 1 1
0 1 ). In case of c 6=∞, Gc is generated by γc = Act

hcA−1
c

for some smallest nonzero positive real number hc , called the cusp width of the cusp c such
that γc ∈ G where Ac = ±

(
c −1
1 0

)
∈ PSL2(R) so that Ac(∞) = c, as defined above. From now

on for convenience h∞ will be denoted by h.

2.1. Fuchsian groups of the first kind. —The class of all Fuchsian groups is divided
into two categories, namely Fuchsian groups of the first and of the second kind depending
on the hyperbolic area of their fundamental domain. The fundamental domain, denoted by
FG , exists for any discrete group G acting on H. It is a connected open set FG in H in which
no two elements of FG are equivalent with respect to G, and any point in H is equivalent
to a point in the closure of FG with respect to G i.e. any G-orbit in H intersects with the
closure of FG . The hyperbolic area of FG may be finite or infinite. When FG has finite area
then such G is a Fuchsian group of the first kind otherwise of the second kind. For example
G =

〈
± ( 1 1

0 1 )
〉
is the simplest example of a Fuchsian group of the second kind.

A Fuchsian group G will have several different fundamental domains but this can be observed
that their area will always be the same. From FG a (topological) surface ΣG is obtained by
identifying the closure F̂G of FG using the action of G on F̂G , i.e. ΣG = F̂G/∼ (equivalently
ΣG = G\H∗G). In fact ΣG can be given a complex structure, for details see Chapter 1 of [30].
The surface ΣG has genus-g where as surface G\H is of genus-g with finitely many punctures.
Due to Fricke, any Fuchsian group G of the first kind is finitely generated. In fact,

G =
〈
ai, bi, rj , γk

∣∣ Πg
i=1[ai, bi] ·Πl

j=1rj ·Πn
k=1γk = 1 , rmjj = 1

〉
where 1 ≤ i ≤ g, 1 ≤ j ≤ l, 1 ≤ k ≤ n and [a, b] = aba−1b−1. The elements ai, bi are the
generators of the stabilizer group of the 2g orbits of hyperbolic fixed points, each rj is the
generator of the stabilizer group of l orbits of elliptic fixed points, each γk is the generator
of the stabilizer group of n orbits of cusps of G and for j, mj ∈ Z≥2 denotes the order of
elliptic element rj .
The set of numbers (g;m1, . . . ,ml; n) is called the signature of G. For example, the signature of
Γ(1), Γ0(2) and Γ(2) are (0; 2, 3; 1), (0; 2; 2) and (0;_; 3) respectively, where “_” represents the
nonexistence of any nontrivial elliptic element in Γ(2). By using the Gauss–Bonnet formula,
the area of any FG can be computed in terms of its signature. Namely,

Area(FG) = 2π
[
2g− 2 +

l∑
j=1

(
1− 1

mj

)
+ n

]
.

With respect to a set of generators of G, FG can be chosen to be the interior of a convex
polygon bounded by (4g + 2l + 2n − 2) geodesics, the sides of which are pairwise identified
under the action of the generators of G. For G = Γ(1) the polygon is bounded by 4 sides,
which can be seen in Figure 1, although the sides (ω, i) and (i,−ω̄) lie on the same geodesic.
The group G is called a co-compact group if n = 0. In addition if l = 0 then the group G
is called a strictly hyperbolic group and in this case ΣG is a compact Riemann surface of
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J. Bajpai 9

−ω̄ω

−1
2

0 1
2

i

Figure 1. Fundamental domain of Γ(1). All 4 geodesics can be described as
follows: straight lines ω to ∞ and −ω̄ to ∞ contribute to two geodesics and
the arcs ω to i and i to −ω̄ contribute to the other two geodesics, here ω =
−1+i

√
3

2 .

genus-g. In general, F̂G has exactly n-vertices on R ∪ {∞}. These vertices correspond to the
inequivalent cusps of G.
One of the basic properties of Fuchsian groups of the first kind is that their action on H gives
rise to a genus-g surface ΣG of finite area which give the Riemann surface of genus-g with
finitely many special points . These special points correspond to the G-orbits of elliptic fixed
points and cusps of G. Let G be a such Fuchsian group of the first kind. Let ÊG := {ej ∈
H | 1 ≤ j ≤ l} be a set of all inequivalent elliptic fixed points of G where for every j, ej ’s are
representatives of distinct orbits of elliptic fixed points of G with respect to its action on H
and ĈG := {ck ∈ R∪{∞} | 1 ≤ k ≤ n} be a set of all inequivalent cusps of G where for every
k, ck’s are representatives of the distinct orbits of cusps of G with respect to its action on
R∪ {∞} . For example, if G = Γ(1), then ĈG = {∞} and ÊG = {i, 1+i

√
3

2 }, if G = Γ0(2), then
ĈG = {0,∞} and ÊG = {1+i

2 }, if G = Γ(2), then ĈG = {0, 1,∞} and ÊG = φ. Consequently,
G\H∗G − (ÊG ∪ ĈG) is a Riemann surface with l + n punctures.

3. Vector-valued modular forms

Let G denote a Fuchsian group of the first kind with a cusp at∞, unless otherwise mentioned.
More precisely, as long as G has at least one cusp then that cusp can (and will) be moved to∞
without changing anything, simply by conjugating the group by the matrix Ac = ±

(
c −1
0 1

)
∈

PSL2(R) if c ∈ R is a cusp of G. Roughly speaking a vvmf for G of any weight w ∈ 2Z with
respect to a multiplier ρ is a meromorphic vector-valued function X : H→ Cd which satisfies
a functional equation of the form X(γτ) = ρ(γ)(cτ + d)wX(τ) for every γ = ±

(
a b
c d

)
∈ G and

is also meromorphic at every cusp of G. The multiplier ρ is a representation of G of rank d
for arbitrary d and is an important ingredient in the theory of vvmf. This article deals with
the vvmf of G of any even integer weight w with respect to a generic kind of multiplier which
we call an admissible multiplier. This amounts to little loss of generality and is defined in the
following

Definition 3.1 (Admissible Multiplier). — Let G be any Fuchsian group of the first
kind with a cusp at ∞ and ρ : G→ GLd(C) be a rank d representation of G. We say that ρ
is an admissible multiplier of G if it satisfies the following properties:

Publications mathématiques de Besançon – 2019/1



10 Lifting of Modular Forms

(1) ρ(t∞) is a diagonal matrix, i.e. there exists a diagonal matrix Λ∞ ∈ Md(C) such that
ρ(t∞) = exp(2πiΛ∞) and Λ∞ will be called an exponent matrix of cusp ∞. From now
we fix an exponent matrix Λ∞ and it will be denoted by Λ.

(2) ρ(tc) is a diagonalizable matrix for every c ∈ ĈG\{∞}, i.e. there exists an invertible
matrix Pc ∈ GLd(C) and a diagonal matrix Λc ∈ Md(C) such that P−1

c ρ(tc)Pc =
exp(2πiΛc), and Λc will be called an exponent matrix of cusp c.

Note 3.2. — Note that each exponent Λc for every c ∈ CG , is defined only up to changing any
diagonal entry by an integer and therefore Λc is defined to be the unique exponent satisfying
0 ≤ (Λc)ξξ < 1 for all 1 ≤ ξ ≤ d. All modular forms have an infinite series expansion at the
cusp c ∈ ĈG . These expansions will be referred to as Fourier series expansions. Often these
expansions are also referred to as q̃z - expansion with respect to z ∈ H∗G where in case of
z ∈ EG ∪ CG

q̃z =

exp
(

2πiA−1
z
τ

hz

)
if z ∈ CG(

τ−z
τ−z̄

)` if z ∈ EGof order `.

Remark 3.3. —

(a) Dropping the diagonalizability does not introduce serious complications. The main dif-
ference is the Fourier coefficient in q̃z -expansions become polynomials in τ . A revealing
example of such a vvmf is X(τ) =

(τ
1
)
of weight w = −1 for any G with respect to the

multiplier ρ which is the defining representation of G.

(b) Obviously, if ρ(t∞) was also merely diagonalizable, ρ could be replaced with an equiva-
lent representation satisfying the assumption (1) of the multiplier system. Thus in this
sense, assumption (1) is assumed without the loss of generality for future convenience.
Since almost every matrix is diagonalizable, the generic representations are admissible.
For example: the rank two admissible irreducible representations of Γ(1) fall into 3 fam-
ilies parameterized by 1 complex parameter, and only six irreducible representations are
not admissible. For details see Section 4 of [14].

(c) The reason for assumptions (1) and (2) in the Definition 3.1 of the multiplier system is
that any vvmf X(τ) for ρ will have q̃c-expansions.

Definition 3.4. — Let G be any Fuchsian group of the first kind with a cusp at∞, w ∈ 2Z
and ρ : G→ GLd(C) be any rank d admissible multiplier of G. Then a meromorphic vector-
valued function X : H→ Cd is ameromorphic vvmf of weight w of G with respect to multiplier
ρ, if X(τ) has finitely many poles in F̂G ∩ H and has the following functional and cuspidal
behaviour.

(1) Functional behaviour

X(γτ) = ρ(γ)j(γ, τ)wX(τ), ∀ γ ∈ G & ∀ τ ∈ H,
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(2) Cuspidal behaviour
(a) at the cusp ∞:

X(τ) = q̃ Λ
∞∑

n=−M
X[n] q̃

n, X[n] ∈ Cd,

(b) at the cusp c( 6=∞):

X(τ) = (τ − c)−wPcq̃ ΛcP−1
c

∞∑
n=−Mc

X
c

[n] q̃
n

c
, X

c

[n] ∈ Cd.

Following this weakly holomorphic and holomorphic vvmf of even integer weight with respect
to an admissible multiplier is now defined.

Definition 3.5. — Let G be any Fuchsian group of the first kind , ρ be an admissible
multiplier of G of rank d and w ∈ 2Z. Then

(1) A meromorphic vvmf X(τ) is said to be weakly holomorphic vvmf for G of weight w
and multiplier ρ if X(τ) is holomorphic throughout H. Let M!

w(ρ) denote the set of all
such weakly holomorphic vvmf for G of weight w and multiplier ρ.

(2) X(τ) ∈ M!
w(ρ) is called a holomorphic vvmf if X(τ) is holomorphic throughout H∗G . Let

Mw(ρ) denote the set of all such holomorphic vvmf for G of weight w and multiplier ρ.

Remark 3.6. — Let RG denote the ring of scalar-valued weakly holomorphic automorphic
functions of G. Then RG := M!

0(1) = C[Jc1
G , . . . , J

cn

G ], where n is the number of elements in the
set ĈG and Jc

G is the normalized hauptmodul of G with respect to c ∈ ĈG . There is an obvious
RG-module structure on M!

w(ρ). Without loss of generality we may assume that c1 =∞.

4. Lifting of modular forms

Let G be any Fuchsian group of the first kind with a cusp at ∞ and H be any finite index
subgroup of G. In this section the relation between weakly holomorphic vvmf of H and G is
established. Let n be the number of inequivalent cusps and l be the number of inequivalent
elliptic fixed points of G, and let mj , 1 ≤ j ≤ l, denote the orders of the elliptic fixed
points. The weight of the cusp form ∆G(τ) is 2L where L = lcm[mj , 1 ≤ j ≤ l]. Think
of it as the analogue for G of the cusp form ∆(τ) = q

∏∞
n=1(1 − qn)24 of Γ(1) of weight

12 = 2 lcm[2, 3]. Like ∆(τ), ∆G(τ) is holomorphic throughout H∗G and nonzero everywhere
except at the cusp ∞. Because ∆G(τ) is holomorphic and nonzero throughout the simply
connected domain H, it possesses a holomorphic logarithm log ∆G(τ) in H. For any w ∈ C
define ∆G(τ)w = exp(w log ∆G(τ)) then ∆G(τ)w is also holomorphic throughout H. A little
work shows that it is a holomorphic modular form. For any G, let ν : G → C× denote the
multiplier of the scalar-valued modular form ∆G(τ)

1
2L . For example, in case of G = Γ(1) the

multiplier ν for any γ = ±
(
a b
c d

)
∈ Γ(1) is explicitly defined as follows:

ν(γ) =
{

exp[2πi(a+d
12c )− 1− 2

∑c−1
i=1

i
c(
di
c − b

di
c c −

1
2)] if c 6= 0

exp[2πi(a(b−3)+3
12 )] if c = 0.
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12 Lifting of Modular Forms

More details on the multiplier system associated to η(τ) can be found in [1, 16] and in general
to any modular forms in [26]. ∆G(τ) is obtained through exploiting its close connection with
quasimodular form E(2,G)(τ) of weight 2 and depth 1 of group G. It is a solution to the
equation

q̃
d
dq̃∆G(q̃) = α∆G(q̃)E(2,G)(q̃)

for some constant α. For any G with at least one cusp, the quasimodular forms E(2,G)(τ) are
discussed in [32] and the cusp forms like ∆ in [10]. Using the above technical information, we
obtain the following

Lemma 4.1. — For any w ∈ 2Z , M!
w(ρ) and M!

0(ρ ⊗ ν−w) are naturally isomorphic as
RG-modules, where the isomorphism is defined by X(τ) 7→ ∆G(τ)

− w
2L X(τ).

We now state the two theorems which are the main results and focus of this section.

Theorem 4.2. — Let G be any Fuchsian group of the first kind and H be any finite index
subgroup of G, i.e. [G : H] = m. If ρ is a rank d admissible representation of H then the
induced representation ρ̃ = IndG

H(ρ) of G of rank dm is also an admissible representation.

Theorem 4.3. — Let G, H, ρ be as in Theorem 4.2 and w be an even integer. Then there is a
natural RG-module isomorphism between M!

w(ρ) and M!
w(ρ̃) where the induced representation

ρ̃ = IndG

H(ρ) is an admissible representation of G of rank dm.

Theorem 4.2 is an important tool to prove Theorem 4.3 which establishes the relation between
weakly holomorphic vvmf of H and G. More importantly, the isomorphism between M!

w(ρ)
and M!

w(ρ̃) is given by

X(τ) 7→
(
X(γ−1

1 τ),X(γ−1
2 τ), . . . ,X(γ−1

m τ)
)t

,

where {γ1, . . . , γm} are distinct coset representatives of H in G.
Before giving the proofs of Theorems 4.2 and 4.3 let us recall why ρ̃ = IndG

H(ρ) defines a
representation. Write G = γ1H∪ γ2H∪ · · · ∪ γmH. Without loss of generality we may assume
that γ1 = 1. The representation ρ : H → GLd(C) can be extended to a function on all of G,
i.e. ρ : G −→ Md(C) by setting ρ(x) = 0,∀ x /∈ H where Md(C) is the set of all d× d matrices
over C. The induced representation ρ̃ = IndG

H(ρ) : G −→ GLdm(C) is defined by

(4.1) ρ̃(x) =


ρ(γ−1

1 xγ1) ρ(γ−1
1 xγ2) . . . ρ(γ−1

1 xγm)
ρ(γ−1

2 xγ1) ρ(γ−1
2 xγ2) . . . ρ(γ−1

2 xγm)
...

... . . . ...
ρ(γ−1

m xγ1) ρ(γ−1
m xγ2) . . . ρ(γ−1

m xγm)

 , ∀ x ∈ G.

Due to the extension of ρ for any x ∈ G and ∀ 1 ≤ i ≤ m there exists a unique 1 ≤ j ≤ m
such that ρ(γ−1

i xγj) 6= 0. Therefore, exactly one nonzero d×d block appear in every row and
every column of (4.1).
Before going into the details of the proofs of the Theorems 4.2 and 4.3, let us confirm that ρ̃
does not depend on the choice of the coset representatives.

Publications mathématiques de Besançon – 2019/1



J. Bajpai 13

Lemma 4.4. — Let G,H be as in Theorem 4.2. Let R̃ = {g1, . . . , gm}, R̂ = {γ1, . . . , γm}
be two different coset representatives of H in G. Let ρ : H → GLd(C) be an admissible
representation. Then the induced representation ρ̃ = IndG

H(ρ) and ρ̂ = IndG

H(ρ) with respect to
the coset representatives R̃ and R̂ respectively are equivalent representations of G.

Proof. — For each 1 ≤ i ≤ m there exists xi ∈ H such that γi = gixi up to reordering
gi’s and γi’s . Then ρ̂(g) = D−1ρ̃(g)D for every g ∈ G where block diagonal matrix D =
Diag

(
ρ(x1), . . . , ρ(xm)

)
is the conjugating matrix between ρ̃ and ρ̂ . �

Lemma 4.5. — Let G and H be as in Theorem 4.2. Fix any cusp c ∈ ĈG and let c1, . . . , cnc
be the representatives of the H-inequivalent cusps which are G-equivalent to the cusp c, so
(4.2) G · c = ∪nci=1H · ci .

Let kc be the cusp width of c in G and hci be the cusp width of ci in H. Write hi = hci
kc
∈ Z,

Gc = 〈tc〉 and Ai(c) = ci where Ai ∈ G. Then m =
∑
i hi and coset representatives of H in G

can be taken to be gij = tjcA
−1
i for all i and 0 ≤ j < hi.

Proof. — Let g be any element of G. Because of the decomposition (4.2) there is a unique
i such that g−1c = γ · ci for some γ ∈ H. Then Aigγ fixes ci and so it equals AitjcA−1

i for
some j ∈ Z. Recall that tc = Act

kcA−1
c where Ac =

(
c −1
1 0

)
∈ PSL2(R) such that Ac(∞) = c.

Note that AitjcA−1
i and Aitj+hic A−1

i = Ait
j
cA
−1
i Ait

hi
c A
−1
i lie in the same coset of H because

hi is the least positive integer such that Aithic A−1
i ∈ H. Moreover Hci = 〈ti = Ait

hi
c A
−1
i 〉 and

ti = (AiAc)tkchi(AiAc)−1. Thus we can restrict 0 ≤ j < hi. This means that every coset gH of
H in G contains an element of the form tjcA

−1
i := gij for some 0 ≤ j < hi and some 1 ≤ i ≤ nc.

This implies that m ≤
∑nc
i=1 hi.

In addition, for all the ranges of i, j as above the cosets gijH are distinct. Indeed, let i, j, k, l
in the range as above such that gijH = gklH, i.e. tjcA−1

i H = tlcA
−1
k H, i.e. Aktj−lc A−1

i ∈ H .
Then Aktj−lc A−1

i · ci = ck. Hence ci and ck are H-equivalent cusps which implies that i = k.
This implies that Aitj−lc A−1

i ∈ Hci . hi is the smallest positive integer for which Aithic A−1
i ∈ H

and 0 ≤ j, l < hi therefore 0 ≤ |j− l| < hi and Aitj−lc A−1
i ∈ H is possible only when j− l = 0.

This implies that j = l. Hence for i, j, k, l ranged as above gijH = gklH requires i = k and
j = l. Thus

∑nc
i=1 hi ≤ m and we are done. �

Example 4.6. — As an illustration of Lemma 4.5, Table 1 shows data for certain finite
index subgroups H of G = Γ(1). In this case ĈG = {∞}, kc = 1 and ci ∈ ĈH , hi = hci .

Proof of Theorem 4.2. — We need to show that for each cusp c of G, ρ̃(tc) is diagonalizable.
Let c be any cusp of G. Due to Lemma 4.4, it is sufficient to choose the coset representatives
as in Lemma 4.5. Then ρ̃(tc) can be written in block form as

(4.3) ρ(g−1
ij tcgkl) =


I , if i = k and j 6= hi − 1
ρ(ti) , if i = k, j = 0 and l = hi − 1
0 , otherwise,

where i, j, k, l range as in Lemma 4.5, I is the identity matrix of order d×d and ti = Ait
hi
c A
−1
i

is the generator of the stabilizer Hci in H. Thus ρ̃(tc) is in block form, one for each i of order
dhi × dhi. Also, for every 1 ≤ i ≤ nc ρ(ti) := Ti is diagonalizable by the admissibility
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14 Lifting of Modular Forms

Table 1. Relation between index and cusp widths of H in G.

H m ĈH hi

Γ0(2) 3 {0,∞} 2, 1
Γ(2) 6 {0, 1,∞} 2, 2, 2
Γ0(3) 4 {0,∞} 3, 1
Γ(3) 12 {−1, 0, 1,∞} 3, 3, 3, 3
Γ0(4) 6 {−1

2 , 0,∞} 1, 4, 1
Γ(4) 24 {−1,−1

2 , 0, 1, 2,∞} 4, 4, 4, 4, 4, 4
Γ0(8) 12 {−1

4 ,−
1
2 , 0,∞} 1, 2, 8, 1

hypothesis. So, for every i let v(i,k), 1 ≤ k ≤ d, be a basis of eigenvectors respectively with
eigenvalues λ(i,k) of ρ(ti). Let ζ be any h

th

i root of unity and let V(i,k,ζ) be the column vector of
order dm×1, defined as follows. Its nonzero entries appear only in the ith block of order dhi×1.
That block is given by

(
λ

1/hi
(i,k)

v(i,k), ζλ
1/hi
(i,k)

v(i,k), ζ
2λ

1/hi
(i,k)

v(i,k), . . . , ζ
hi−1λ

1/hi
(i,k)

v(i,k)
)t. From (4.3) it

is clear that V(i,k,ζ) is an eigenvector of ρ̃(tc) with eigenvalue ζλ1/hi
(i,k)

. Hence, for every i there
are exactly dhi eigenvectors of order dm×1 formed with respect to the dhi eigenvalues ζλ

1/hi
(i,k)

for ζ = exp
(2πij
hi

)
with 0 ≤ j < hi. Since V(i,k,ζ) are linearly independent, ρ̃(tc) is indeed

diagonalizable. �

Recall from the definition of admissible multiplier system that the exponent Λc for any cusp c
of G is a diagonal matrix such that P−1

c ρ(tc)Pc = exp(2πiΛc) for some diagonalizing matrix Pc.

Corollary 4.7. — For any cusp c of G an exponent Ωc of the induced representation
IndG

H(ρ), of a rank d admissible representation ρ of H, has components (Λi )kk+j
hi

, where
1 ≤ i ≤ nc, 0 ≤ j < hi, 1 ≤ k ≤ d and Λi is an exponent of ρ at cusp ci.

Proof. — From the proof of Theorem 4.2, for every c ∈ ĈG , ρ̃(tc) is a diagonalizable matrix
with the eigenvalues{

ξλ
1/hi
(i,k)

∣∣∣∣ 1 ≤ i ≤ nc, 1 ≤ k ≤ d, and ξ = exp
(2πij
hi

)
, 1 ≤ j < hi

}
.

For all i there exists a diagonalizing matrix Pi such that P−1
i ρ(ti)Pi = exp(2πiΛi), where the

exponent matrix Λi = Diag(Λi1, . . . ,Λid). Therefore, λ(i,k) = exp(2πiΛ
ik

). This implies that
ξλ

1/hi
(i,k)

= exp
(
2πiΛ

ik
+j

hi

)
. Hence the exponent Ωc of ρ̃(tc) has dm diagonal entries of the form

(Λi )kk+j
hi

. �

A formal proof of Theorem 4.2 in complete generality made the argument more complicated
than it really is. Thus, this simple idea will be illustrated with an example in Section 6.

Proof of Theorem 4.3. — ρ̃ : G → GLdm(C) is an induced representation of G of an admis-
sible representation ρ : H → GLd(C) of H. For any representation ρ : H → GLd(C) we wish
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to find an isomorphism between M!
w(ρ) and M!

w(ρ̃). Lemma 4.1 gives M!
w(ρ) ≈ M!

0(ρ⊗ ν−wH )
using the isomorphism X(τ) 7→ ∆

− w
2L

G X(τ), where ν−wH is the restriction of ν−wG to H. Simi-
larly, M!

w(ρ̃) ≈ M!
0(ρ̃⊗ ν−wG ). Therefore to show a one-to-one correspondence between M!

w(ρ)
and M!

w(ρ̃) it is enough to establish a one-to-one correspondence between M!
0(ρ ⊗ ν−wH ) and

M!
0(ρ̃⊗ ν−wG ). Note that IndG

H(ρ⊗ ν−wH ) = IndG

H(ρ)⊗ ν−wG . Let X(τ) ∈ M!
0(ρ) then define

X̃(τ) =
(
X(γ−1

1 τ),X(γ−1
2 τ), . . . ,X(γ−1

m τ)
)t

.

We claim that X̃(τ) ∈ M!
0(ρ̃ ′). Since every component is weakly holomorphic therefore X̃(τ)

is also weakly holomorphic. Hence it suffices to check the functional behaviour of X̃(τ) under
G , i.e. for all γ = ±

(
a b
c d

)
∈ G, X̃(γτ) = ρ̃(γ)X̃(τ). Consider X̃(γτ) for γ ∈ G, then by

definition

X̃(γτ) =


X(γ−1

1 γτ)
X(γ−1

2 γτ)
...

X(γ−1
m γτ)

 =


X(γ−1

1 γγj1γ
−1
j1
τ)

X(γ−1
2 γγj2γ

−1
j2
τ)

...
X(γ−1

m γγjmγ
−1
jm
τ)

 =


ρ(γ−1

1 γγj1)X(γ−1
j1
τ)

ρ(γ−1
2 γγj2)X(γ−1

j2
τ)

...
ρ(γ−1

m γγjm)X(γ−1
jm
τ)

 .

This implies that X̃(τ) ∈ M!
0(ρ̃). Conversely, for any X̃(τ) ∈ M!

0(ρ̃) define X(τ) by taking the
first d components of X̃(τ), i.e. X(τ) =

(
X̃1(τ), . . . , X̃d(τ)

)t
. Since γ1 = 1 therefore for every

γ ∈ H, ρ(γ) will appear as the first d× d block in the dm× dm matrix ρ̃(γ) such that all the
other entries in the first row and column are zeros and first d components on both sides of
X̃(γτ) = ρ̃(γ)X̃(τ), for every γ ∈ H give the required identity X(γτ) = ρ(γ)X(τ), for every
γ ∈ H. To see whether thus defined X(τ) will have Fourier expansion at every cusp of H, first
notice that ĈH = {γ−1

j c | c ∈ ĈG & 1 ≤ j ≤ m} and ĈG ⊂ ĈH . Since for all j, γj /∈ H we obtain

X(γjτ) =
(
X̃1(γjτ), X̃2(γjτ), . . . , X̃d(γjτ)

)t

.

Since for any c ∈ ĈG , c and γ
−1
j c are G-equivalent cusps, every component of X(γjτ) inherits

the Fourier expansion at cusp c from the Fourier expansion of X̃(γjτ). Hence, X̃(τ) is a weakly
holomorphic vvmf and has Fourier expansion at every cusp of G. �

5. Existence

Theorem 5.1. — Let G be a Fuchsian group of the first kind and ρ : G → GLd(C) be
any admissible representation of finite image. Then there exists a weakly holomorphic vector-
valued modular function for G with multiplier ρ, whose components are linearly independent
over C.

Proof. — First, note that if f(z) is any nonconstant function holomorphic in some disc then
the powers f(z)1, f(z)2, . . . are linearly independent over C. To see this let z0 be in the disc;
it suffices to prove this for the powers of g(z) = f(z) − f(z0), but this is clear from Taylor
series expansion of g(z) =

∑∞
n=k(z − z0)nan where ak 6= 0 (k is the order of the zero at
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16 Lifting of Modular Forms

z = z0). In particular, if f(z) is any nonconstant modular function for any Fuchsian group of
the first kind then its powers are linearly independent over C.
Moreover, suppose G,H are distinct Fuchsian groups of the first kind with H normal in G
with index m. Fix any τ0 ∈ H\{EG} such that all m points γiτ0 are distinct where γi are m
inequivalent coset representatives. Then there is a modular function f(τ) for H such that the
m points f(γiτ0) are distinct. This is because distinct Fuchsian groups must have distinct
sets of modular functions. Define

(5.1) g(τ) =
∏
i

(f(γiτ)− f(γiτ0))i.

Then g(τ) is also a modular function for H, and manifestly the m functions g(γiτ) are linearly
independent over C (since they have different orders of vanishing at τ0).
Let H = ker(ρ). Then ρ defines a representation of the finite group K = G/H, so ρ decomposes
into a direct sum

⊕
imiρi of irreducible representations ρi of K, where mi is the multiplicity

of irreducible representation ρi of K in ρ.
Suppose that the Theorem is true for all irreducible representations ρi of K. Let

Xi(τ) =
(
Xi1(τ), . . . ,Xidi(τ)

)t

be a vvmf for the ith-irreducible representation of K with linearly independent components.
Changing basis, ρ can be written in the block-diagonal form (mi blocks for each ρi). Choose
any nonconstant modular function f(τ) of G. Then

X(τ) =
(
f(τ)X1(τ), . . . , f(τ)m1X1(τ), f(τ)X2(τ), . . . , f(τ)m2X2(τ), . . . . . .

)t

will be a vvmf for G with multiplier ρ (or rather ρ written in block-diagonal form), and the
components of X(τ) will be linearly independent over C.
So it suffices to prove the theorem for irreducible representations of K. Let m = [G : H] = |K|
and write G = γ1H ∪ γ2H ∪ · · · ∪ γmH. Let g(τ) be the modular function for H defined
above by equation (5.1), which is such that the m functions g(γiτ) are linearly independent
over C. Induce g(τ) (which transforms by the trivial H-representation) from H to a vvmf
Xg(τ) of G; by definition its m components Xg,i(τ) = g(γiτ) are linearly independent over
C. Inducing the trivial representation of H gives the regular representation of K and the
regular representation of a finite group (such as K) contains each irreducible representation
(in fact with a multiplicity equal to the dimension of the irreducible representation). To find a
vvmf for the K-irreducible representation ρj find a subrepresentation of regular representation
equivalent to σj for some j in σ := IndG

H(1) =
⊕
jmjσj . Observe that every X(τ) of M!

0(σ)
can be realized as Xg(τ) for some g(τ) of M!

0(1) where 1 denotes the trivial representation
of H. Let P be a change of basis matrix such that P−1σP = δ ⊕ δ′ with δ = σj , and σj
appearing as first dj × dj block matrix in the matrix P−1σP . Here P can be realized as a
block permutation matrix of the summands σj ’s of σ. Now, construct Xj(τ) by the first dj
components of PX(τ) which is the desired vvmf of ρj . By construction all the components of
Xj(τ) will be linearly independent over C. �
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6. Examples

Let us fix t = ± ( 1 1
0 1 ) , s = ±

( 0 1
−1 0

)
and u = st−1 = ±

(
0 −1
1 −1

)
. The matrices t, s and u are

of order ∞, 2 and 3 respectively. Write

G := Γ(1) ∼=
〈
t, s, u

∣∣ s2 = 1 = u3 = tsu
〉
,

H := Γ0(2) ∼=
〈
t∞ := t, t0 := st2s, tω

∣∣ t2ω = 1 = tωt0t∞
〉
,

K := Γ(2) ∼=
〈
t∞ := t2, t0 := st2s, t1 := tst2st−1 ∣∣ t1t∞t0 = 1

〉
,

where tω = ±
( 1 1
−2 −1

)
and ω = −1+i

2 is an elliptic fixed point of order 2. H and K both are
congruence subgroups of G of index 3 and 6 respectively and recall that ĈG = {∞}, ĈH =
{∞, 0}, ĈK = {∞, 0, 1}.

6.1. Exponent matrix of a lift. —

– Since [G : K] = 6 write G = K∪ tK∪ sK∪ tsK∪ stK∪ tstK. Let ρ : K→ GLd(C) be any
admissible representation and write ρ(tc) = Tc for the cusp c = 1, 0,∞, then there exist
exponent matrices Λ,Λ0,Λ1 and matrices P0,P1 ∈ GLd(C) such that T∞ = exp(2πiΛ),
P0T0P−1

0 = exp(2πiΛ0), P1T1P−1
1 = exp(2πiΛ1) are diagonal matrices, where Λ,Λ0, and

Λ1 are exponent matrices of cusps ∞, 0 and 1 respectively. Define ρ̂ = IndG

K(ρ) : G →
GL6d(C), then from equation (4.1)

ρ̂(t) := T̂∞ =



0 T∞ 0 0 0 0
I 0 0 0 0 0
0 0 0 T0 0 0
0 0 I 0 0 0
0 0 0 0 0 T1
0 0 0 0 I 0


.

To assure the admissibility of ρ̂ we need to show that ρ̂(t) is diagonalizable, and this
follows from Theorem 4.2. From Corollary 4.7, the exponent matrix of cusp ∞ of G with
respect to ρ̂ is

Ω = Diag
(Λ

2 ,
1 + Λ

2 ,
Λ0
2 ,

1 + Λ0
2 ,

Λ1
2 ,

1 + Λ1

2

)
.

– Since [G : H] = 3 write G = H ∪ sH ∪ tsH. Let ρ : H → GLd(C) be any admissible
representation. From the definition of induced representation ρ̃ = IndG

H(ρ) : G→ GL3d(C)
defined by the equation (4.1)

ρ̃(t) := T̃∞ =

 T∞ 0 0
0 0 T0
0 I 0

 .

From Theorem 4.2, it follows that ρ̃(t) is diagonalizable and from Corollary 4.7, the
exponent matrix of cusp ∞ of G with respect to the admissible representation ρ̂ is

Ω = Diag
(

Λ, Λ0
2 ,

1 + Λ0
2

)
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18 Lifting of Modular Forms

6.2. An easy construction of vvmf. —An explaination of the above ideas is provided
by constructing a rank two and three vvmf of Γ0(2) and Γ(1). Write H = K ∪ tK. Let
σ : K −→ C× be a trivial multiplier of K. Consider ρ̃ = IndH

K(σ) : H → GL2(C) to be the
induced representation of H. Therefore, by equation (4.1) we get T̃∞ = ρ̃(t) = ( 0 1

1 0 ) and
T̃0 = ρ̃(t0) = ( 1 0

0 1 ) . Let zK(τ) = − 1
16
(
q̃
−1 − 8 + 20q̃− 62q̃3 + 216q̃5 + . . .

)
with q = exp(2πiτ)

and q̃ = q1/2, be a hauptmodul of K which sends the cusps ∞, 0 and 1 respectively to ∞, 0
and 1. Consider X(τ) = zK(τ), a weight zero scalar-valued modular form of K, then

X̃(τ) =
(
X(τ),X(t−1τ)

)t

is a weight zero rank two vvmf of G with respect to an equivalent admissible multiplier
ρ̃ ′ = P−1ρ̃ P of ρ̃, where P =

( 1 −1
1 1

)
and the exponent matrix Ω of ρ̃ ′ is

(
1/2 0
0 1

)
.

Similarly, write G = H ∪ sH ∪ (ts)H. Let zH(τ) = − 1
64
(
q−1 − 24 + 276q − 2048q2 + . . .

)
be a hauptmodul of H which takes the values ∞, 0 and 1 respectively at ∞, 0 and ω. Let
1 : H → C× be the trivial multiplier of H and ρ̂ = IndG

H(1) : G → GL3(C) be the induced
representation of G, then for X(τ) = zH(τ),

X̃(τ) =
(
X(τ),X(s−1τ),X((ts)−1τ)

)t

is a weight zero rank three vvmf of Γ(1) with respect to an equivalent admissible multiplier
ρ̂ ′ of ρ̂ where following equation (4.1),

T̂∞ = ρ̂(t) =

1(t) 0 0
0 0 1(t0)
0 1(1) 0

 =

1 0 0
0 0 1
0 1 0


and therefore ρ̂ ′ = P−1ρ̂ P with P =

( 1 0 0
0 1 −1
0 1 1

)
. In this case, an exponent matrix Ω of ρ̂ ′ is

the diagonal matrix Diag(1, 1, 1/2).
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